Binomial Coefficients , Catalan Numbers and Lucas Quotients

نویسندگان

  • Zhi-Wei Sun
  • ZHI-WEI SUN
چکیده

Let p be an odd prime and let a, m ∈ Z with a > 0 and p ∤ m. In this paper we determine p a −1 k=0 2k k+d /m k mod p 2 for d = 0, 1; for example, p a −1 k=0 2k k m k ≡ m 2 − 4m p a + m 2 − 4m p a−1 u p−(m 2 −4m p) (mod p 2), where (−) is the Jacobi symbol and {u n } n0 is the Lucas sequence given by u 0 = 0, u 1 = 1 and u n+1 = (m − 2)u n − u n−1 (n = 1, 2, 3,. . .). As an application, we determine 0<k<p a , k≡r (mod p−1) C k modulo p 2 for any integer r, where C k denotes the Catalan number 2k k /(k + 1). We also pose some related conjectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Congruences for Catalan and Motzkin numbers and related sequences

We prove various congruences for Catalan and Motzkin numbers as well as related sequences. The common thread is that all these sequences can be expressed in terms of binomial coefficients. Our techniques are combinatorial and algebraic: group actions, induction, and Lucas’ congruence for binomial coefficients come into play. A number of our results settle conjectures of Benoit Cloitre and Reinh...

متن کامل

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

We establish various generating functions for sequences associated with central binomial coefficients, Catalan numbers and harmonic numbers. In terms of these generating functions, we obtain a large variety of interesting series. Our approach is based on manipulating the well-known generating function of the Catalan numbers.

متن کامل

Generalized Fibonacci polynomials and Fibonomial coefficients

The focus of this paper is the study of generalized Fibonacci polynomials and Fibonomial coefficients. The former are polynomials {n} in variables s, t given by {0} = 0, {1} = 1, and {n} = s{n−1}+t{n−2} for n ≥ 2. The latter are defined by { n k } = {n}!/({k}!{n−k}!) where {n}! = {1}{2} . . . {n}. These quotients are also polynomials in s, t and specializations give the ordinary binomial coeffi...

متن کامل

Jacobi Polynomials and Congruences Involving Some Higher-Order Catalan Numbers and Binomial Coefficients

In this paper, we study congruences on sums of products of binomial coefficients that can be proved by using properties of the Jacobi polynomials. We give special attention to polynomial congruences containing Catalan numbers, second-order Catalan numbers, the sequence Sn = ( 3n)( 3n 2n) 2( n )(2n+1) , and the binomial coefficients ( 3n n )

متن کامل

On Divisibility Properties of Some Differences of the Central Binomial Coefficients and Catalan Numbers

We discuss divisibility properties of some differences of the central binomial coefficients and Catalan numbers. The main tool is the application of various congruences modulo high prime powers for binomial coefficients combined with some recurrence relevant to these combinatorial quantities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010